enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. The spider and the fly problem - Wikipedia

    en.wikipedia.org/wiki/The_spider_and_the_fly_problem

    Isometric projection and net of naive (1) and optimal (2) solutions of the spider and the fly problem. The spider and the fly problem is a recreational mathematics problem with an unintuitive solution, asking for a shortest path or geodesic between two points on the surface of a cuboid. It was originally posed by Henry Dudeney.

  3. Category:Cuboids - Wikipedia

    en.wikipedia.org/wiki/Category:Cuboids

    Cuboid means "like a cube", in the sense that by adjusting the length of the edges or the angles between edges and faces, a cuboid can be transformed into a cube. In math language a cuboid is convex polyhedron , whose polyhedral graph is the same as that of a cube .

  4. Cuboid - Wikipedia

    en.wikipedia.org/wiki/Cuboid

    Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types.

  5. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    A rectangular cuboid with integer edges, as well as integer face diagonals, is called an Euler brick; for example with sides 44, 117, and 240. A perfect cuboid is an Euler brick whose space diagonal is also an integer. It is currently unknown whether a perfect cuboid actually exists. [6] The number of different nets for a simple cube is 11 ...

  6. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Packing squares in a square: Optimal solutions have been proven for n from 1-10, 14-16, 22-25, 33-36, 62-64, 79-81, 98-100, and any square integer. The wasted space is asymptotically O(a 3/5). Packing squares in a circle: Good solutions are known for n ≤ 35. The optimal packing of 10 squares in a square

  7. Euler brick - Wikipedia

    en.wikipedia.org/wiki/Euler_brick

    In the case of the body cuboid, the body (space) diagonal g is irrational. For the edge cuboid, one of the edges a, b, c is irrational. The face cuboid has one of the face diagonals d, e, f irrational. The body cuboid is commonly referred to as the Euler cuboid in honor of Leonhard Euler, who discussed this type of cuboid. [15]

  8. Face diagonal - Wikipedia

    en.wikipedia.org/wiki/Face_diagonal

    [1] A cuboid has twelve face diagonals (two on each of the six faces), and it has four space diagonals. [2] The cuboid's face diagonals can have up to three different lengths, since the faces come in congruent pairs and the two diagonals on any face are equal. The cuboid's space diagonals all have the same length.

  9. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    A cube is a special case of rectangular cuboid in which the edges are equal in length. [1] Like other cuboids, every face of a cube has four vertices, each of which connects with three congruent lines. These edges form square faces, making the dihedral angle of a cube between every two adjacent squares being the interior angle of a square, 90 ...

  1. Related searches what is a cuboid gcse physics answers book 1 solutions class 12 maths matrices

    rectangular cuboidrectangular cuboid website
    wikipedia cuboidcuboid polyhedron