enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tridiagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix

    A tridiagonal matrix is a matrix that is both upper and lower Hessenberg matrix. [2] In particular, a tridiagonal matrix is a direct sum of p 1-by-1 and q 2-by-2 matrices such that p + q/2 = n — the dimension of the tridiagonal. Although a general tridiagonal matrix is not necessarily symmetric or Hermitian, many of those that arise when solving

  3. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination that can be used to solve tridiagonal systems of equations. A tridiagonal system for n unknowns may be written as

  4. Block matrix - Wikipedia

    en.wikipedia.org/wiki/Block_matrix

    In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. [1] [2]Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices.

  5. Inverse iteration - Wikipedia

    en.wikipedia.org/wiki/Inverse_iteration

    In numerical analysis, inverse iteration (also known as the inverse power method) is an iterative eigenvalue algorithm. It allows one to find an approximate eigenvector when an approximation to a corresponding eigenvalue is already known. The method is conceptually similar to the power method. It appears to have originally been developed to ...

  6. Lehmer matrix - Wikipedia

    en.wikipedia.org/wiki/Lehmer_matrix

    The inverse of a Lehmer matrix is a tridiagonal matrix, where the superdiagonal and subdiagonal have strictly negative entries. Consider again the n×n A and m×m B Lehmer matrices, where m > n . A rather peculiar property of their inverses is that A −1 is nearly a submatrix of B −1 , except for the A −1 n,n element, which is not equal to ...

  7. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  8. Hessenberg matrix - Wikipedia

    en.wikipedia.org/wiki/Hessenberg_matrix

    A matrix that is both upper Hessenberg and lower Hessenberg is a tridiagonal matrix, of which the Jacobi matrix is an important example. This includes the symmetric or Hermitian Hessenberg matrices. A Hermitian matrix can be reduced to tri-diagonal real symmetric matrices. [7]

  9. Divide-and-conquer eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Divide-and-conquer_eigen...

    Above, we pointed out that reducing a Hermitian matrix to tridiagonal form takes flops. This dwarfs the running time of the divide-and-conquer part, and at this point it is not clear what advantage the divide-and-conquer algorithm offers over the QR algorithm (which also takes Θ ( m 2 ) {\displaystyle \Theta (m^{2})} flops for tridiagonal ...