Search results
Results from the WOW.Com Content Network
In recent times the catalytic oxidation of cyclohexene by (immobilized) metalloporphyrin complexes has been found to be an efficient way. [7] [8] In laboratory, cyclohexene oxide can also be prepared by reacting cyclohexene with magnesium monoperoxyphthalate (MMPP) in a mixture of isopropanol and water as solvent at room temperature. [9]
Benzene is converted to cyclohexylbenzene by acid-catalyzed alkylation with cyclohexene. [6] Cyclohexylbenzene is a precursor to both phenol and cyclohexanone. [7] Hydration of cyclohexene gives cyclohexanol, which can be dehydrogenated to give cyclohexanone, a precursor to caprolactam. [8] The oxidative cleavage of cyclohexene gives adipic acid.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
ChemAxon Name <> Structure – ChemAxon IUPAC (& traditional) name to structure and structure to IUPAC name software. As used at chemicalize.org; chemicalize.org A free web site/service that extracts IUPAC names from web pages and annotates a 'chemicalized' version with structure images. Structures from annotated pages can also be searched.
Cyclohexene derivatives, such as imines, epoxides, and halonium ions, react with nucleophiles in a stereoselective fashion, affording trans-diaxial addition products. The term “Trans-diaxial addition” describes the mechanism of the addition, however the products are likely to equilibrate by ring flip to the lower energy conformer, placing the new substituents in the equatorial position.
For cyclohexane, cyclohexene, and cyclohexadiene, dehydrogenation is the conceptually simplest pathway for aromatization. The activation barrier decreases with the degree of unsaturation. Thus, cyclohexadienes are especially prone to aromatization. Formally, dehydrogenation is a redox process. Dehydrogenative aromatization is the reverse of ...
A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). [1] Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and applications of organic heterocycles .
Resonance structures of normal-demand dienes and dienophiles In general, the regioselectivity found for both normal and inverse electron-demand Diels–Alder reaction follows the ortho-para rule , so named, because the cyclohexene product bears substituents in positions that are analogous to the ortho and para positions of disubstituted arenes.