Ad
related to: electromagnetic field tensor lines are formed by moving
Search results
Results from the WOW.Com Content Network
The electromagnetic tensor, conventionally labelled F, is defined as the exterior derivative of the electromagnetic four-potential, A, a differential 1-form: [1] [2] = . Therefore, F is a differential 2-form— an antisymmetric rank-2 tensor field—on Minkowski space. In component form,
If the matter field is taken so as to describe the interaction of electromagnetic fields with the Dirac electron given by the four-component Dirac spinor field ψ, the current and charge densities have form: [2] = † = †, where α are the first three Dirac matrices. Using this, we can re-write Maxwell's equations as:
Electromagnetic (EM) fields affect the motion of electrically charged matter: due to the Lorentz force. In this way, EM fields can be detected (with applications in particle physics, and natural occurrences such as in aurorae). In relativistic form, the Lorentz force uses the field strength tensor as follows. [4]
This is often described by saying that the electric field and magnetic field are two interrelated aspects of a single object, called the electromagnetic field. Indeed, the entire electromagnetic field can be represented in a single rank-2 tensor called the electromagnetic tensor; see below.
Maxwell's equations can be written in tensor form, generally viewed by physicists as a more elegant means of expressing physical laws. The behavior of electric and magnetic fields, whether in cases of electrostatics, magnetostatics, or electrodynamics (electromagnetic fields), is governed by Maxwell's equations. In the vector field formalism ...
This is violated for Minkowski space with a line removed, which can model a (flat) spacetime with a point-like monopole on the complement of the line. In the differential form formulation on arbitrary space times, F = 1 / 2 F αβ dx α ∧ dx β is the electromagnetic tensor considered as a 2-form, A = A α dx α is the potential 1 ...
An overriding requirement on the descriptions in different frameworks is that they be consistent.Consistency is an issue because Newtonian mechanics predicts one transformation (so-called Galilean invariance) for the forces that drive the charges and cause the current, while electrodynamics as expressed by Maxwell's equations predicts that the fields that give rise to these forces transform ...
The electromagnetic field is a covariant antisymmetric tensor of degree 2, which can be defined in terms of the electromagnetic potential by =.. To see that this equation is invariant, we transform the coordinates as described in the classical treatment of tensors: ¯ = ¯ ¯ ¯ ¯ = ¯ (¯) ¯ (¯) = ¯ ¯ + ¯ ¯ ¯ ¯ ¯ ¯ = ¯ ¯ ¯ ¯ = ¯ ¯ = ¯ ¯.
Ad
related to: electromagnetic field tensor lines are formed by moving