enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy minimization - Wikipedia

    en.wikipedia.org/wiki/Energy_minimization

    As described above, some method such as quantum mechanics can be used to calculate the energy, E(r) , the gradient of the PES, that is, the derivative of the energy with respect to the position of the atoms, ∂E/∂r and the second derivative matrix of the system, ∂∂E/∂r i ∂r j, also known as the Hessian matrix, which describes the curvature of the PES at r.

  3. Tafel equation - Wikipedia

    en.wikipedia.org/wiki/Tafel_equation

    In other words, it assumes that the electrode mass transfer rate is much greater than the reaction rate, and that the reaction is dominated by the slower chemical reaction rate ". [7] [circular reference] Also, at a given electrode the Tafel equation assumes that the reverse half reaction rate is negligible compared to the forward reaction rate.

  4. Marangoni effect - Wikipedia

    en.wikipedia.org/wiki/Marangoni_effect

    The Marangoni stress (/), i.e., gradient in the surface tension due gradient in the surfactant concentration (from high in the centre of the expanding patch, to zero far from the patch). The viscous shear stress is simply the viscosity times the gradient in shear velocity ∼ μ ( u / l ) {\displaystyle \sim \mu (u/l)} , for l {\displaystyle l ...

  5. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    A more intuitive characteristic of exponential decay for many people is the time required for the decaying quantity to fall to one half of its initial value. (If N(t) is discrete, then this is the median life-time rather than the mean life-time.) This time is called the half-life, and often denoted by the symbol t 1/2. The half-life can be ...

  6. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  7. Lapse rate - Wikipedia

    en.wikipedia.org/wiki/Lapse_rate

    At Earth's surface, the Tolman gradient would be about = (m), where is the temperature of the gas at the elevation of Earth's surface. Santiago and Visser remark that "gravity is the only force capable of creating temperature gradients in thermal equilibrium states without violating the laws of thermodynamics" and "the existence of Tolman's ...

  8. Temperature gradient - Wikipedia

    en.wikipedia.org/wiki/Temperature_gradient

    A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature spatial gradient is a vector quantity with dimension of temperature difference per unit length. The SI unit is kelvin per meter (K/m).

  9. Potential gradient - Wikipedia

    en.wikipedia.org/wiki/Potential_gradient

    The simplest definition for a potential gradient F in one dimension is the following: [1] = = where ϕ(x) is some type of scalar potential and x is displacement (not distance) in the x direction, the subscripts label two different positions x 1, x 2, and potentials at those points, ϕ 1 = ϕ(x 1), ϕ 2 = ϕ(x 2).