enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generator matrix - Wikipedia

    en.wikipedia.org/wiki/Generator_matrix

    In coding theory, a generator matrix is a matrix whose rows form a basis for a linear code. The codewords are all of the linear combinations of the rows of this matrix, that is, the linear code is the row space of its generator matrix.

  3. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    A Markov arrival process is defined by two matrices, D 0 and D 1 where elements of D 0 represent hidden transitions and elements of D 1 observable transitions. The block matrix Q below is a transition rate matrix for a continuous-time Markov chain.

  4. Binary Golay code - Wikipedia

    en.wikipedia.org/wiki/Binary_Golay_code

    Lexicographic code: Order the vectors in V lexicographically (i.e., interpret them as unsigned 24-bit binary integers and take the usual ordering). Starting with w 0 = 0, define w 1, w 2, ..., w 12 by the rule that w n is the smallest integer which differs from all linear combinations of previous elements in at least eight coordinates.

  5. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]

  6. Transition-rate matrix - Wikipedia

    en.wikipedia.org/wiki/Transition-rate_matrix

    In probability theory, a transition-rate matrix (also known as a Q-matrix, [1] intensity matrix, [2] or infinitesimal generator matrix [3]) is an array of numbers describing the instantaneous rate at which a continuous-time Markov chain transitions between states.

  7. Generator (computer programming) - Wikipedia

    en.wikipedia.org/wiki/Generator_(computer...

    In Python, a generator can be thought of as an iterator that contains a frozen stack frame. Whenever next() is called on the iterator, Python resumes the frozen frame, which executes normally until the next yield statement is reached. The generator's frame is then frozen again, and the yielded value is returned to the caller.

  8. Template:Calendar - Wikipedia

    en.wikipedia.org/wiki/Template:Calendar

    Display a year or month calendar Template parameters [Edit template data] Parameter Description Type Status Year year the ordinal year number of the calendar Default current Number suggested Month month whether to display a single month instead of a whole year, and which one Default empty Example current, next, last, 1, January String suggested Show year show_year whether to display the year ...

  9. Infinitesimal generator (stochastic processes) - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_generator...

    In mathematics — specifically, in stochastic analysis — the infinitesimal generator of a Feller process (i.e. a continuous-time Markov process satisfying certain regularity conditions) is a Fourier multiplier operator [1] that encodes a great deal of information about the process.