Search results
Results from the WOW.Com Content Network
The size n of the orbit is called the length of the corresponding cycle; when n = 1, the single element in the orbit is called a fixed point of the permutation. A permutation is determined by giving an expression for each of its cycles, and one notation for permutations consist of writing such expressions one after another in some order.
A cyclic permutation consisting of a single 8-cycle. There is not widespread consensus about the precise definition of a cyclic permutation. Some authors define a permutation σ of a set X to be cyclic if "successive application would take each object of the permuted set successively through the positions of all the other objects", [1] or, equivalently, if its representation in cycle notation ...
Enumerations of specific permutation classes; Factorial. Falling factorial; Permutation matrix. Generalized permutation matrix; Inversion (discrete mathematics) Major index; Ménage problem; Permutation graph; Permutation pattern; Permutation polynomial; Permutohedron; Rencontres numbers; Robinson–Schensted correspondence; Sum of permutations ...
Cycle notation describes the effect of repeatedly applying the permutation on the elements of the set S, with an orbit being called a cycle. The permutation is written as a list of cycles; since distinct cycles involve disjoint sets of elements, this is referred to as "decomposition into disjoint cycles".
The cycle index of a permutation group G is the average of the cycle index monomials of all the permutations g in G. More formally, let G be a permutation group of order m and degree n . Every permutation g in G has a unique decomposition into disjoint cycles, say c 1 c 2 c 3 ... .
Parity of a permutation; Permanent (mathematics) Permutable prime; Permutation (music) Permutation automaton; Permutation box; Permutation matrix; Permutation polynomial; Permutoassociahedron; Permutohedron; Place-permutation action; Plain hunt; Pseudorandom permutation
There are a few equivalent ways to state this definition. A cyclic order on X is the same as a permutation that makes all of X into a single cycle, which is a special type of permutation - a circular permutation. Alternatively, a cycle with n elements is also a Z n-torsor: a set with a free transitive action by a finite cyclic group. [1]
Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...