Search results
Results from the WOW.Com Content Network
The matrix left-division operator concisely expresses some semantic properties of matrices. As in the scalar equivalent, if the (determinant of the) coefficient (matrix) A is not null then it is possible to solve the (vectorial) equation A * x = b by left-multiplying both sides by the inverse of A: A −1 (in both MATLAB and GNU Octave ...
This is done by creating an index to a precalculated array of 256 possible polygon configurations (2 8 =256) within the cube, by treating each of the 8 scalar values as a bit in an 8-bit integer. If the scalar's value is higher than the iso-value (i.e., it is inside the surface) then the appropriate bit is set to one, while if it is lower ...
The library routines would also be better than average implementations; matrix algorithms, for example, might use full pivoting to get better numerical accuracy. The library routines would also have more efficient routines. For example, a library may include a program to solve a matrix that is upper triangular.
In linear algebra, a column vector with elements is an matrix [1] consisting of a single column of entries, for example, = [].. Similarly, a row vector is a matrix for some , consisting of a single row of entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.
A diagonal matrix with equal diagonal entries is a scalar matrix; that is, a scalar multiple λ of the identity matrix I. Its effect on a vector is scalar multiplication by λ . For example, a 3×3 scalar matrix has the form: [ λ 0 0 0 λ 0 0 0 λ ] ≡ λ I 3 {\displaystyle {\begin{bmatrix}\lambda &0&0\\0&\lambda &0\\0&0&\lambda \end{bmatrix ...
Elliptic curve scalar multiplication is the operation of successively adding a point along an elliptic curve to itself repeatedly. It is used in elliptic curve cryptography (ECC). The literature presents this operation as scalar multiplication , as written in Hessian form of an elliptic curve .
Scalar multiplication of a vector by a factor of 3 stretches the vector out. The scalar multiplications −a and 2a of a vector a. In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra [1] [2] [3] (or more generally, a module in abstract algebra [4] [5]).