Search results
Results from the WOW.Com Content Network
13934 and other numbers x such that x ≥ 13934 would be an upper bound for S. The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on ...
Most bounds are greater or equal to one, and are thus not sharp for a polynomial which have only roots of absolute values lower than one. However, such polynomials are very rare, as shown below. Any upper bound on the absolute values of roots provides a corresponding lower bound.
The rational number line Q does not have the least upper bound property. An example is the subset of rational numbers = {<}. This set has an upper bound. However, this set has no least upper bound in Q: the least upper bound as a subset of the reals would be √2, but it does not exist in Q.
More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
A Fermi problem (or Fermi question, Fermi quiz), also known as an order-of-magnitude problem, is an estimation problem in physics or engineering education, designed to teach dimensional analysis or approximation of extreme scientific calculations.
By the boundedness theorem, f is bounded from above, hence, by the Dedekind-completeness of the real numbers, the least upper bound (supremum) M of f exists. It is necessary to find a point d in [a, b] such that M = f(d). Let n be a natural number. As M is the least upper bound, M – 1/n is not an upper bound for f.
The following bounds are known for the Chebyshev functions: (in these formulas p k is the k th prime number; p 1 = 2, ... Upper bounds exist for both ...