Search results
Results from the WOW.Com Content Network
In combinatorial optimization, network flow problems are a class of computational problems in which the input is a flow network (a graph with numerical capacities on its edges), and the goal is to construct a flow, numerical values on each edge that respect the capacity constraints and that have incoming flow equal to outgoing flow at all vertices except for certain designated terminals.
A flow must satisfy the restriction that the amount of flow into a node equals the amount of flow out of it, unless it is a source, which has only outgoing flow, or sink, which has only incoming flow. A network can be used to model traffic in a computer network, circulation with demands, fluids in pipes, currents in an electrical circuit, or ...
The "current-arc" data structure is a mechanism for visiting the in- and out-neighbors of a node in the flow network in a static circular order. If a singly linked list of neighbors is created for a node, the data structure can be as simple as a pointer into the list that steps through the list and rewinds to the head when it runs off the end.
The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA) is a greedy algorithm that computes the maximum flow in a flow network.It is sometimes called a "method" instead of an "algorithm" as the approach to finding augmenting paths in a residual graph is not fully specified [1] or it is specified in several implementations with different running times. [2]
Network problems that involve finding an optimal way of doing something are studied as combinatorial optimization.Examples include network flow, shortest path problem, transport problem, transshipment problem, location problem, matching problem, assignment problem, packing problem, routing problem, critical path analysis, and program evaluation and review technique.
The maximum flow problem can be seen as a special case of more complex network flow problems, such as the circulation problem. The maximum value of an s-t flow (i.e., flow from source s to sink t) is equal to the minimum capacity of an s-t cut (i.e., cut severing s from t) in the network, as stated in the max-flow min-cut theorem .
This caused a lack of any known polynomial-time algorithm to solve the max flow problem in generic cases. Dinitz's algorithm and the Edmonds–Karp algorithm (published in 1972) both independently showed that in the Ford–Fulkerson algorithm, if each augmenting path is the shortest one, then the length of the augmenting paths is non-decreasing ...
The problem can be solved by reduction to the minimum cost network flow problem. [11] Construct a flow network with the following layers: Layer 1: One source-node s. Layer 2: a node for each agent. There is an arc from s to each agent i, with cost 0 and capacity c i. Level 3: a node for each task.