Search results
Results from the WOW.Com Content Network
The trigonometric functions of angles that are multiples of 15°, 18°, or 22.5° have simple algebraic values. These values are listed in the following table for angles from 0° to 45°. [ 1 ] In the table below, the label "Undefined" represents a ratio 1 : 0. {\displaystyle 1:0.}
A trigonometry table is essentially a reference chart that presents the values of sine, cosine, tangent, and other trigonometric functions for various angles. These angles are usually arranged across the top row of the table, while the different trigonometric functions are labeled in the first column on the left.
Trigonometric functions were among the earliest uses for mathematical tables. [48] Such tables were incorporated into mathematics textbooks and students were taught to look up values and how to interpolate between the values listed to get higher accuracy. [49] Slide rules had special scales for trigonometric functions. [50]
The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .
SR-50 (1974) Printed circuit board. Data code 035: 3rd week 1975. The SR-50 was Texas Instruments' first scientific pocket calculator with trigonometric and logarithm functions. . It enhanced their earlier SR-10 and SR-11 calculators, introduced in 1973, which had featured scientific notation, squares, square root, and reciprocals, but had no trig or log functions, and lacked other featur
A scientific calculator is an electronic calculator, either desktop or handheld, designed to perform calculations using basic (addition, subtraction, multiplication, division) and advanced (trigonometric, hyperbolic, etc.) mathematical operations and functions.
The pocket-sized Hewlett-Packard HP-35 scientific calculator was the first handheld device of its type, but it cost US$395 in 1972. This was justifiable for some engineering professionals, but too expensive for most students. Around 1974, lower-cost handheld electronic scientific calculators started to make slide rules largely obsolete.
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...