enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radian - Wikipedia

    en.wikipedia.org/wiki/Radian

    One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  4. Steradian - Wikipedia

    en.wikipedia.org/wiki/Steradian

    A solid angle of one steradian subtends a cone aperture of approximately 1.144 radians or 65.54 degrees. In the SI, solid angle is considered to be a dimensionless quantity, the ratio of the area projected onto a surrounding sphere and the square of the sphere's radius. This is the number of square radians in the solid angle.

  5. Gradian - Wikipedia

    en.wikipedia.org/wiki/Gradian

    [18] [19] Today, the degree, ⁠ 1 / 360 ⁠ of a turn, or the mathematically more convenient radian, ⁠ 1 / 2 π ⁠ of a turn (used in the SI system of units) is generally used instead. In the 1970s – 1990s, most scientific calculators offered the gon (gradian), as well as radians and degrees, for their trigonometric functions . [ 23 ]

  6. Minute and second of arc - Wikipedia

    en.wikipedia.org/wiki/Minute_and_second_of_arc

    A second of arc, arcsecond (abbreviated as arcsec), or arc second, denoted by the symbol ″, [2] is a unit of angular measurement equal to ⁠ 1 / 60 ⁠ of a minute of arc, ⁠ 1 / 3600 ⁠ of a degree, [1] ⁠ 1 / 1 296 000 ⁠ of a turn, and ⁠ π / 648 000 ⁠ (about ⁠ 1 / 206 264.8 ⁠) of a radian.

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    provided the angle is measured in radians. Angles measured in degrees must first be converted to radians by multiplying them by ⁠ / ⁠. These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science.

  8. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Now every quaternion component appears multiplied by two in a term of degree two, and if all such terms are zero what is left is an identity matrix. This leads to an efficient, robust conversion from any quaternion – whether unit or non-unit – to a 3 × 3 rotation matrix.

  9. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    Solid angles can also be measured in square degrees (1 sr = (180/ π) 2 square degrees), in square arc-minutes and square arc-seconds, or in fractions of the sphere (1 sr = ⁠ 1 / 4 π ⁠ fractional area), also known as spat (1 sp = 4 π sr). In spherical coordinates there is a formula for the differential,