Search results
Results from the WOW.Com Content Network
That force is the net force. [1] When forces act upon an object, they change its acceleration. The net force is the combined effect of all the forces on the object's acceleration, as described by Newton's second law of motion. When the net force is applied at a specific point on an object, the associated torque can be calculated.
A body remains at rest, or in motion at a constant speed in a straight line, unless it is acted upon by a force. At any instant of time, the net force on a body is equal to the body's acceleration multiplied by its mass or, equivalently, the rate at which the body's momentum is changing with time.
The work W done by a constant force of magnitude F on a point that moves a displacement s in a straight line in the direction of the force is the product = For example, if a force of 10 newtons (F = 10 N) acts along a point that travels 2 metres (s = 2 m), then W = Fs = (10 N) (2 m) = 20 J. This is approximately the work done lifting a 1 kg ...
For example, an object on a level surface is pulled (attracted) downward toward the center of the Earth by the force of gravity. At the same time, a force is applied by the surface that resists the downward force with equal upward force (called a normal force). The situation produces zero net force and hence no acceleration. [3]
F is the resultant force applied, t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.
where p i = momentum of particle i, F ij = force on particle i by particle j, and F E = resultant external force (due to any agent not part of system). Particle i does not exert a force on itself. Torque. Torque τ is also called moment of a force, because it is the rotational analogue to force: [8]
According to this equation, the second force F 2 (r) is obtained by scaling the first force and changing its argument, as well as by adding inverse-square and inverse-cube central forces. For comparison, Newton's theorem of revolving orbits corresponds to the case a = 1 and b = 0, so that r 1 = r 2. In this case, the original force is not ...
The weight of the object in the fluid is reduced, because of the force acting on it, which is called upthrust. In simple terms, the principle states that the buoyant force (F b) on an object is equal to the weight of the fluid displaced by the object, or the density of the fluid multiplied by the submerged volume (V) times the gravity (g) [1] [3]