Search results
Results from the WOW.Com Content Network
As the droplet grows, it never encounters equilibrium, and thus grows without bound, as long as the level of supersaturation is maintained. However, if the supersaturation is only 0.3%, the drop will only grow until about 0.5 micrometers. The supersaturation at which the drop will grow without bound is called the critical supersaturation.
In physical chemistry, supersaturation occurs with a solution when the concentration of a solute exceeds the concentration specified by the value of solubility at equilibrium. Most commonly the term is applied to a solution of a solid in a liquid , but it can also be applied to liquids and gases dissolved in a liquid.
In physics, the Saha ionization equation is an expression that relates the ionization state of a gas in thermal equilibrium to the temperature and pressure. [ 1 ] [ 2 ] The equation is a result of combining ideas of quantum mechanics and statistical mechanics and is used to explain the spectral classification of stars.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
Integrating this with respect to Q results in an equation for the generating function of the transformation given by equation : F 3 ( p , Q ) = p Q {\displaystyle F_{3}(p,Q)={\frac {p}{Q}}} To confirm that this is the correct generating function, verify that it matches ( 1 ):
A condition known as supersaturation may develop. Supersaturation by gas may be defined as a sum of all partial pressures of gases dissolved in the liquid which exceeds the ambient pressure in the liquid. [19] The gas will not necessarily form bubbles in the solvent at this stage, but supersaturation is necessary for bubble growth. [3]
which shows that the number operator can be interpreted via the Mehler kernel as the generator of fractional Fourier transforms for arbitrary values of t, and of the conventional Fourier transform for the particular value = /, with the Mehler kernel providing an active transform, while the corresponding passive transform is already embedded in ...
The dynamics of relaxation are very important in cloud physics for accurate mathematical modelling. In water clouds where the concentrations are larger (hundreds per cm 3) and the temperatures are warmer (thus allowing for much lower supersaturation rates as compared to ice clouds), the relaxation times will be very low (seconds to minutes). [5]