Search results
Results from the WOW.Com Content Network
OpenML: [494] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [495] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...
This database system can also project crop yields and evaluate the impact of environmental factors such as climate change on plant growth and suitability. [12] Most niche modelling methods are available in the R packages 'dismo', 'biomod2' and 'mopa'.. Software developers may want to build on the openModeller project.
In machine learning, a common task is the study and construction of algorithms that can learn from and make predictions on data. [1] Such algorithms function by making data-driven predictions or decisions, [2] through building a mathematical model from input data. These input data used to build the model are usually divided into multiple data ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The iris data set is widely used as a beginner's dataset for machine learning purposes. The dataset is included in R base and Python in the machine learning library scikit-learn, so that users can access it without having to find a source for it. Several versions of the dataset have been published. [8]
In some applications such as automatic calibration or machine learning, the NSE lower limit of (−∞) creates problems. To eliminate this problem and re-scale the NSE to lie solely within the range of {0,1} normalization, use the following equation that yields a Normalized Nash–Sutcliffe Efficiency (NNSE) [6] [7]
Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. The soil moisture curve is characteristic for different types of soil, and is also called the soil moisture characteristic. It is used to predict the soil water storage, water supply to the plants (field capacity) and soil aggregate stability.
Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.