enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arrhenius plot - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_plot

    Arrhenius plots are often used to analyze the effect of temperature on the rates of chemical reactions. For a single rate-limited thermally activated process, an Arrhenius plot gives a straight line, from which the activation energy and the pre-exponential factor can both be determined.

  3. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  4. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. [1] The activation energy ( E a ) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [ 2 ]

  5. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    However, the Arrhenius equation was derived from experimental data and models the macroscopic rate using only two parameters, irrespective of the number of transition states in a mechanism. In contrast, activation parameters can be found for every transition state of a multistep mechanism, at least in principle.

  6. Time–temperature superposition - Wikipedia

    en.wikipedia.org/wiki/Time–temperature...

    The time–temperature shift factor can also be described in terms of the activation energy (E a). By plotting the shift factor a T versus the reciprocal of temperature (in K), the slope of the curve can be interpreted as E a /k, where k is the Boltzmann constant = 8.64x10 −5 eV/K and the activation energy is expressed in terms of eV.

  7. Desorption - Wikipedia

    en.wikipedia.org/wiki/Desorption

    Next, the desorption rate for a particular coverage is determined from each curve and an Arrhenius plot of the logarithm of the rate of desorption against 1/T is made. An example of an Arrhenius plot can be seen in the figure on the right. The activation energy can be found from the gradient of this Arrhenius plot. [7]

  8. Marcus theory - Wikipedia

    en.wikipedia.org/wiki/Marcus_theory

    From the reaction rate's temperature dependence an activation energy is determined, and this activation energy is interpreted as the energy of the transition state in a reaction diagram. The latter is drawn, according to Arrhenius and Eyring, as an energy diagram with the reaction coordinate as the abscissa.

  9. Aquilanti–Mundim deformed Arrhenius model - Wikipedia

    en.wikipedia.org/wiki/Aquilanti–Mundim_Deformed...

    In case of a single rate-limited thermally activated process, an Arrhenius plot gives a straight line, from which the activation energy and the pre-exponential factor can both be determined. However, advances in experimental and theoretical methods have revealed the existence of deviation from Arrhenius behavior (Fig.1).