Search results
Results from the WOW.Com Content Network
Modular form theory is a special case of the more general theory of automorphic forms, which are functions defined on Lie groups that transform nicely with respect to the action of certain discrete subgroups, generalizing the example of the modular group () ().
The matrices [e 1, ..., e n] are divisible by all non-zero linear forms in the variables X i with coefficients in the finite field F q. In particular the Moore determinant [0, 1, ..., n − 1] is a product of such linear forms, taken over 1 + q + q 2 + ... + q n – 1 representatives of ( n – 1)-dimensional projective space over the field.
A class of groups is a set-theoretical collection of groups satisfying the property that if G is in the collection then every group isomorphic to G is also in the collection. This concept arose from the necessity to work with a bunch of groups satisfying certain special property (for example finiteness or commutativity ).
For example, the vertex of each indecomposable module in a block is contained (up to conjugacy) in the defect group of the block, and no proper subgroup of the defect group has that property. Brauer's first main theorem states that the number of blocks of a finite group that have a given p -subgroup as defect group is the same as the ...
In mathematics, a group is called an Iwasawa group, M-group or modular group if its lattice of subgroups is modular. Alternatively, a group G is called an Iwasawa group when every subgroup of G is permutable in G (Ballester-Bolinches, Esteban-Romero & Asaad 2010, pp. 24–25). Kenkichi Iwasawa proved that a p-group G is an Iwasawa group if and ...
The braid group B 3 is the universal central extension of the modular group. Under this covering, the preimage of the modular group PSL(2, Z) is the braid group on 3 generators, B 3, which is the universal central extension of the modular group. These are lattices inside the relevant algebraic groups, and this corresponds algebraically to the ...
A group is called unimodular if the modular function is identically , or, equivalently, if the Haar measure is both left and right invariant. Examples of unimodular groups are abelian groups, compact groups, discrete groups (e.g., finite groups), semisimple Lie groups and connected nilpotent Lie groups.
In mathematics, the modular group is the projective special linear group (,) of matrices with integer coefficients and determinant, such that the matrices and are identified. The modular group acts on the upper-half of the complex plane by linear fractional transformations .