Search results
Results from the WOW.Com Content Network
In theoretical physics and applied mathematics, a field equation is a partial differential equation which determines the dynamics of a physical field, specifically the time evolution and spatial distribution of the field. The solutions to the equation are mathematical functions which correspond directly to the field, as functions of time and space.
The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.
In quantum field theory, the mass gap is the difference in energy between the lowest energy state, the vacuum, and the next lowest energy state.The energy of the vacuum is zero by definition, and assuming that all energy states can be thought of as particles in plane-waves, the mass gap is the mass of the lightest particle.
A field theory tends to be expressed mathematically by using Lagrangians. This is a function that, when subjected to an action principle, gives rise to the field equations and a conservation law for the theory. The action is a Lorentz scalar, from which the field equations and symmetries can be readily derived.
The Einstein field equation is often written as + =, with a so-called cosmological constant term. However, it is possible to move this term to the right hand side and absorb it into the stress–energy tensor T a b {\displaystyle T^{ab}} , so that the cosmological constant term becomes just another contribution to the stress–energy tensor.
In physics (specifically, the kinetic theory of gases), the Einstein relation is a previously unexpected [clarification needed] connection revealed independently by William Sutherland in 1904, [1] [2] [3] Albert Einstein in 1905, [4] and by Marian Smoluchowski in 1906 [5] in their works on Brownian motion.
An algebraic number field (or simply number field) is a finite-degree field extension of the field of rational numbers. Here degree means the dimension of the field as a vector space over Q {\displaystyle \mathbb {Q} } .
Similarly, over the field of reals, the irreducible factors have degree at most two, while there are polynomials of any degree that are irreducible over the field of rationals Q. The question of polynomial factorization makes sense only for coefficients in a computable field whose every element may be represented in a computer and for which ...