Search results
Results from the WOW.Com Content Network
The most commonly known and studied bioinorganic iron compounds (biological iron molecules) are the heme proteins: examples are hemoglobin, myoglobin, and cytochrome P450. [10] These compounds participate in transporting gases, building enzymes, and transferring electrons. [150] Metalloproteins are a group of proteins with metal ion cofactors.
The most commonly known and studied bioinorganic iron compounds (biological iron molecules) are the heme proteins: examples are hemoglobin, myoglobin, and cytochrome P450. [1] These compounds participate in transporting gases, building enzymes, and transferring electrons. [5] Metalloproteins are a group of proteins with metal ion cofactors.
The iron compounds produced on the largest scale in industry are iron(II) sulfate (FeSO 4 ·7H 2 O) and iron(III) chloride (FeCl 3). The former is one of the most readily available sources of iron(II), but is less stable to aerial oxidation than Mohr's salt ((NH 4) 2 Fe(SO 4) 2 ·6H 2 O). Iron(II) compounds tend to be oxidized to iron(III ...
The heme iron serves as a source or sink of electrons during electron transfer or redox chemistry. In peroxidase reactions, the porphyrin molecule also serves as an electron source, being able to delocalize radical electrons in the conjugated ring. In the transportation or detection of diatomic gases, the gas binds to the heme iron.
Iron bound to proteins or cofactors such as heme is safe. Also, there are virtually no truly free iron ions in the cell, since they readily form complexes with organic molecules. However, some of the intracellular iron is bound to low-affinity complexes, and is termed labile iron or "free" iron.
For example, FeSO 4 is named iron(2+) sulfate (with the 2+ charge on the Fe 2+ ions balancing the 2− charge on the sulfate ion), whereas Fe 2 (SO 4) 3 is named iron(3+) sulfate (because the two iron ions in each formula unit each have a charge of 3+, to balance the 2− on each of the three sulfate ions). [108]
The study of molecules by molecular physics and theoretical chemistry is largely based on quantum mechanics and is essential for the understanding of the chemical bond. The simplest of molecules is the hydrogen molecule-ion, H 2 +, and the simplest of all the chemical bonds is the one-electron bond.
Electrochemically oxidized iron (rust) An iron oxide is a chemical compound composed of iron and oxygen. Several iron oxides are recognized. Often they are non-stoichiometric. Ferric oxyhydroxides are a related class of compounds, perhaps the best known of which is rust. [1]