Search results
Results from the WOW.Com Content Network
The rare iron meteorites are the main form of natural metallic iron on the Earth's surface. Items made of cold-worked meteoritic iron have been found in various archaeological sites dating from a time when iron smelting had not yet been developed; and the Inuit in Greenland have been reported to use iron from the Cape York meteorite for tools ...
Iron shows the characteristic chemical properties of the transition metals, namely the ability to form variable oxidation states differing by steps of one and a very large coordination and organometallic chemistry: indeed, it was the discovery of an iron compound, ferrocene, that revolutionalized the latter field in the 1950s. [1]
Absorption of dietary iron in iron salt form (as in most supplements) varies somewhat according to the body's need for iron, and is usually between 10% and 20% of iron intake. Absorption of iron from animal products, and some plant products, is in the form of heme iron, and is more efficient, allowing absorption of from 15% to 35% of intake.
Elemental iron is virtually absent on the Earth's surface except as iron-nickel alloys from meteorites and very rare forms of deep mantle xenoliths.Although iron is the fourth most abundant element in Earth's crust, composing about 5% by weight, [4] the vast majority is bound in silicate or, more rarely, carbonate minerals, and smelting pure iron from these minerals would require a prohibitive ...
Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture.Rust consists of hydrous iron(III) oxides (Fe 2 O 3 ·nH 2 O) and iron(III) oxide-hydroxide (FeO(OH), Fe(OH) 3), and is typically associated with the corrosion of refined iron.
The nutrient minerals are generally ionic compounds, thus they are not molecules, e.g. iron sulfate. However, the majority of familiar solid substances on Earth are made partly or completely of crystals or ionic compounds, which are not made of molecules.
The most common type is iron-deficiency anemia, in which a lack of iron leads to a reduction in the number of red blood cells or hemoglobin. This can impair oxygen transport throughout the body.
These cells have special molecules that allow them to move iron into the body. To be absorbed, dietary iron can be absorbed as part of a protein such as heme protein or iron must be in its ferrous Fe 2+ form. A ferric reductase enzyme on the enterocytes' brush border, duodenal cytochrome B , reduces ferric Fe 3+ to Fe 2+. [10]