Search results
Results from the WOW.Com Content Network
The focal point F and focal length f of a positive (convex) lens, a negative (concave) lens, a concave mirror, and a convex mirror.. The focal length of an optical system is a measure of how strongly the system converges or diverges light; it is the inverse of the system's optical power.
If the medium surrounding an optical system has a refractive index of 1 (e.g., air or vacuum), then the distance from each principal plane to the corresponding focal point is just the focal length of the system. In the more general case, the distance to the foci is the focal length multiplied by the index of refraction of the medium.
Normal lens: angle of view of the diagonal about 50° and a focal length approximately equal to the image diagonal. Wide-angle lens: angle of view wider than 60° and focal length shorter than normal. Long-focus lens: any lens with a focal length longer than the diagonal measure of the film or sensor. [10] Angle of view is narrower.
35 mm equivalent focal lengths are calculated by multiplying the actual focal length of the lens by the crop factor of the sensor. Typical crop factors are 1.26× – 1.29× for Canon (1.35× for Sigma "H") APS-H format, 1.5× for Nikon APS-C ("DX") format (also used by Sony, Pentax, Fuji, Samsung and others), 1.6× for Canon APS-C format, 2× for Micro Four Thirds format, 2.7× for 1-inch ...
Instead, the angular aperture of a lens (or an imaging mirror) is expressed by the f-number, written f /N, where N is the f-number given by the ratio of the focal length f to the diameter of the entrance pupil D: =. This ratio is related to the image-space numerical aperture when the lens is focused at infinity. [3]
The 1.5 indicates that the angle of view of a lens on the camera is the same as that of a 1.5 times longer focal length on a 35 mm full-frame camera, which explains why the crop factor is also known as a focal-length multiplier. For example, a 28 mm lens on the DSLR (given a crop factor of 1.5) would produce the angle of view of a 42 mm lens on ...
The image sensor format of a digital camera determines the angle of view of a particular lens when used with a particular sensor. Because the image sensors in many digital cameras are smaller than the 24 mm × 36 mm image area of full-frame 35 mm cameras, a lens of a given focal length gives a narrower field of view in such cameras.
The effective focal length is nearly equal to the stated focal length of the lens (F), except in macro photography where the lens-to-object distance is comparable to the focal length. In this case, the absolute transverse magnification factor ( m ) ( m = S 2 / S 1 {\displaystyle m=S_{2}/S_{1}} ) must be taken into account: