Search results
Results from the WOW.Com Content Network
For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance or COP) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work). The efficiency of a heat engine is ...
A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through ...
Since a Carnot heat engine is a reversible heat engine, and all reversible heat engines operate with the same efficiency between the same reservoirs, we have the first part of Carnot's theorem: No irreversible heat engine is more efficient than a Carnot heat engine operating between the same two thermal reservoirs.
A Carnot heat engine [2] is a theoretical heat engine that operates on the Carnot cycle. The basic model for this engine was developed by Nicolas Léonard Sadi Carnot in 1824. The Carnot engine model was graphically expanded by Benoît Paul Émile Clapeyron in 1834 and mathematically explored by Rudolf Clausius in 1857, work that led to the ...
The efficiency of internal combustion engines depends on several factors, the most important of which is the expansion ratio. For any heat engine the work which can be extracted from it is proportional to the difference between the starting pressure and the ending pressure during the expansion phase.
The heat pump itself can be improved by increasing the size of the internal heat exchangers, which in turn increases the efficiency (and the cost) relative to the power of the compressor, and also by reducing the system's internal temperature gap over the compressor. Obviously, this latter measure makes some heat pumps unsuitable to produce ...
Note that a Carnot engine is the most efficient heat engine possible, but not the most efficient device for creating work. Fuel cells, for instance, can theoretically reach much higher efficiencies than a Carnot engine; their energy source is not thermal energy and so their exergy efficiency does not compare them to a Carnot engine. [1] [2]
The theoretical maximum efficiency of any heat engine depends only on the temperatures it operates between. This efficiency is usually derived using an ideal imaginary heat engine such as the Carnot heat engine, although other engines using different cycles can also attain maximum efficiency. Mathematically, after a full cycle, the overall ...