Search results
Results from the WOW.Com Content Network
Special cases are called the real line R 1, the real coordinate plane R 2, and the real coordinate three-dimensional space R 3. With component-wise addition and scalar multiplication, it is a real vector space. The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the ...
For example, the coordinate surfaces obtained by holding ρ constant in the spherical coordinate system are the spheres with center at the origin. In three-dimensional space the intersection of two coordinate surfaces is a coordinate curve. In the Cartesian coordinate system we may speak of coordinate planes. Similarly, coordinate hypersurfaces ...
The field of complex numbers gives complex coordinate space C n. The a + bi form of a complex number shows that C itself is a two-dimensional real vector space with coordinates (a,b). Similarly, the quaternions and the octonions are respectively four- and eight-dimensional real vector spaces, and C n is a 2n-dimensional real vector space.
Standard names for the coordinates in the three axes are abscissa, ordinate and applicate. [9] The coordinates are often denoted by the letters x, y, and z. The axes may then be referred to as the x-axis, y-axis, and z-axis, respectively. Then the coordinate planes can be referred to as the xy-plane, yz-plane, and xz-plane.
Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.)
In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the ...
The example of complex numbers is essentially the same as (that is, it is isomorphic to) the vector space of ordered pairs of real numbers mentioned above: if we think of the complex number x + i y as representing the ordered pair (x, y) in the complex plane then we see that the rules for addition and scalar multiplication correspond exactly to ...
Coordinate systems in astronomy can specify an object's relative position in three-dimensional space or plot merely by its direction on a celestial sphere, if the object's distance is unknown or trivial. Spherical coordinates, projected on the celestial sphere, are analogous to the geographic coordinate system used on the surface of Earth.