Search results
Results from the WOW.Com Content Network
Using the XOR swap algorithm to exchange nibbles between variables without the use of temporary storage. In computer programming, the exclusive or swap (sometimes shortened to XOR swap) is an algorithm that uses the exclusive or bitwise operation to swap the values of two variables without using the temporary variable which is normally required.
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or from mathematical logic; that is, a true output results if one, and only one, of the inputs to the gate is true. If both inputs are false (0 ...
XOR can be used to swap two numeric variables in computers, using the XOR swap algorithm; however this is regarded as more of a curiosity and not encouraged in practice. XOR linked lists leverage XOR properties in order to save space to represent doubly linked list data structures.
A maximum-length LFSR produces an m-sequence (i.e., it cycles through all possible 2 m − 1 states within the shift register except the state where all bits are zero), unless it contains all zeros, in which case it will never change. As an alternative to the XOR-based feedback in an LFSR, one can also use XNOR. [2]
This method swaps two variables by adding and subtracting their values. This is rarely used in practical applications, mainly because: It can only swap numeric variables; it may not be possible or logical to add or subtract complex data types, like containers. When swapping variables of a fixed size, arithmetic overflow becomes an issue.
Matthias Kramm's gfxpoly, a free C library for 2D polygons (BSD license). Klaas Holwerda's Boolean, a C++ library for 2D polygons. David Kennison's Polypack, a FORTRAN library based on the Vatti algorithm. Klamer Schutte's Clippoly, a polygon clipper written in C++. Michael Leonov's poly_Boolean, a C++ library, which extends the Schutte algorithm.
Parity only depends on the number of ones and is therefore a symmetric Boolean function.. The n-variable parity function and its negation are the only Boolean functions for which all disjunctive normal forms have the maximal number of 2 n − 1 monomials of length n and all conjunctive normal forms have the maximal number of 2 n − 1 clauses of length n.
The elements of GF(2 n), i.e. a finite field whose order is a power of two, are usually represented as polynomials in GF(2)[X]. Multiplication of two such field elements consists of multiplication of the corresponding polynomials, followed by a reduction with respect to some irreducible polynomial which is taken from the construction of the field.