Search results
Results from the WOW.Com Content Network
In physics, statistics, econometrics and signal processing, a stochastic process is said to be in an ergodic regime if an observable's ensemble average equals the time average. [1] In this regime, any collection of random samples from a process must represent the average statistical properties of the entire regime.
The mathematical definition of ergodicity aims to capture ordinary every-day ideas about randomness.This includes ideas about systems that move in such a way as to (eventually) fill up all of space, such as diffusion and Brownian motion, as well as common-sense notions of mixing, such as mixing paints, drinks, cooking ingredients, industrial process mixing, smoke in a smoke-filled room, the ...
Ergodic theory is often concerned with ergodic transformations.The intuition behind such transformations, which act on a given set, is that they do a thorough job "stirring" the elements of that set. E.g. if the set is a quantity of hot oatmeal in a bowl, and if a spoonful of syrup is dropped into the bowl, then iterations of the inverse of an ergodic transformation of the oatmeal will not ...
In physics and thermodynamics, the ergodic hypothesis [1] says that, over long periods of time, the time spent by a system in some region of the phase space of microstates with the same energy is proportional to the volume of this region, i.e., that all accessible microstates are equiprobable over a long period of time.
The concept of a dynamical system has its origins in Newtonian mechanics.There, as in other natural sciences and engineering disciplines, the evolution rule of dynamical systems is an implicit relation that gives the state of the system for only a short time into the future.
In probability theory, a stationary ergodic process is a stochastic process which exhibits both stationarity and ergodicity.In essence this implies that the random process will not change its statistical properties with time and that its statistical properties (such as the theoretical mean and variance of the process) can be deduced from a single, sufficiently long sample (realization) of the ...
Usually winds would have to be 60 to 80 mph for the company to consider the de-energization of transmission lines, Powell said, adding that the readings Edison saw were lower than that. The Eaton ...
Optimal decision problems (usually formulated as partially observable Markov decision processes) are treated within active inference by absorbing utility functions into prior beliefs. In this setting, states that have a high utility (low cost) are states an agent expects to occupy.