Search results
Results from the WOW.Com Content Network
The hypothetical mechanism of water transport / trapping (if any) remains unknown: indeed lunar surfaces directly exposed to the solar wind where water production occurs are too hot to allow trapping by water condensation (and solar radiation also continuously decomposes water), while no (or much less) water production is expected in the cold ...
This integrated solar irradiance is called solar irradiation, solar radiation, solar exposure, solar insolation, or insolation. Irradiance may be measured in space or at the Earth's surface after atmospheric absorption and scattering. Irradiance in space is a function of distance from the Sun, the solar cycle, and cross-cycle changes. [2]
The Sun is the star at the center of the Solar System.It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies.
The location would promote self-sustainability for lunar residents, as perpetual sunlight on the south pole would provide energy for solar panels. Furthermore, the shadowed polar regions are believed to contain the frozen water necessary for human consumption and could also be harvested for fuel manufacture. [26]
Science & Tech. Shopping. Sports
Lunar Trailblazer is a planned small (class D) lunar orbiter, part of NASA's SIMPLEx program, that will detect and map water on the lunar surface to determine how its form, abundance, and location relate to geology. [3] Its mission is to aid in the understanding of lunar water and the Moon's water cycle.
This solar cycle affects solar irradiation and influences space weather, terrestrial weather, and climate. The solar cycle also modulates the flux of short-wavelength solar radiation, from ultraviolet to X-ray and influences the frequency of solar flares , coronal mass ejections and other solar eruptive phenomena.
escape the Moon entirely if the particle is moving at or above the lunar escape velocity of 2.38 km/s (1.48 mi/s), or 5,328 mph (8,575 km/h); be lost to space either by solar radiation pressure or, if the gases are ionized, by being swept away in the solar wind's magnetic field.