enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent space - Wikipedia

    en.wikipedia.org/wiki/Tangent_space

    In mathematics, the tangent space of a manifold is a generalization of tangent lines to curves in two-dimensional space and tangent planes to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on ...

  3. Parallelizable manifold - Wikipedia

    en.wikipedia.org/wiki/Parallelizable_manifold

    The term framed manifold (occasionally rigged manifold) is most usually applied to an embedded manifold with a given trivialisation of the normal bundle, and also for an abstract (that is, non-embedded) manifold with a given stable trivialisation of the tangent bundle. A related notion is the concept of a π-manifold. [4]

  4. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    In Euclidean space, all tangent spaces are canonically identified with each other via translation, so it is easy to move vectors from one tangent space to another. Parallel transport is a way of moving vectors from one tangent space to another along a curve in the setting of a general Riemannian manifold. Given a fixed connection, there is a ...

  5. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    The tangent spaces along the curve c(t) are thus canonically identified as inner product spaces by parallel transport so that parallel transport gives an isometry between the tangent planes. The condition on the velocity vector v ˙ ( t ) {\displaystyle {\dot {v}}(t)} may be rewritten in terms of the covariant derivative as [ 15 ] [ 59 ]

  6. Tangent bundle - Wikipedia

    en.wikipedia.org/wiki/Tangent_bundle

    The tangent bundle of the unit circle is trivial because it is a Lie group (under multiplication and its natural differential structure). It is not true however that all spaces with trivial tangent bundles are Lie groups; manifolds which have a trivial tangent bundle are called parallelizable. Just as manifolds are locally modeled on Euclidean ...

  7. Immersion (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Immersion_(mathematics)

    is an injective function at every point p of M (where T p X denotes the tangent space of a manifold X at a point p in X and D p f is the derivative (pushforward) of the map f at point p). Equivalently, f is an immersion if its derivative has constant rank equal to the dimension of M: [2] = ⁡.

  8. Transversality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Transversality_(mathematics)

    The notion of transversality of a pair of submanifolds is easily extended to transversality of a submanifold and a map to the ambient manifold, or to a pair of maps to the ambient manifold, by asking whether the pushforwards of the tangent spaces along the preimage of points of intersection of the images generate the entire tangent space of the ambient manifold. [2]

  9. Almost complex manifold - Wikipedia

    en.wikipedia.org/wiki/Almost_complex_manifold

    An almost complex structure J on M is a linear complex structure (that is, a linear map which squares to −1) on each tangent space of the manifold, which varies smoothly on the manifold. In other words, we have a smooth tensor field J of degree (1, 1) such that J 2 = − 1 {\displaystyle J^{2}=-1} when regarded as a vector bundle isomorphism ...