enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent space - Wikipedia

    en.wikipedia.org/wiki/Tangent_space

    In mathematics, the tangent space of a manifold is a generalization of tangent lines to curves in two-dimensional space and tangent planes to surfaces in three-dimensional space in higher dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on ...

  3. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    The vector fields λ(A), λ(B), λ(C) form a basis of the tangent space at each point of G. Similarly the left invariant vector fields ρ(A), ρ(B), ρ(C) form a basis of the tangent space at each point of G. Let α, β, γ be the corresponding dual basis of left invariant 1-forms on G. [51]

  4. Almost complex manifold - Wikipedia

    en.wikipedia.org/wiki/Almost_complex_manifold

    An easy exercise in linear algebra shows that any even dimensional vector space admits a linear complex structure. Therefore, an even dimensional manifold always admits a (1, 1)-rank tensor pointwise (which is just a linear transformation on each tangent space) such that J p 2 = −1 at each point p. Only when this local tensor can be patched ...

  5. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    In Euclidean space, all tangent spaces are canonically identified with each other via translation, so it is easy to move vectors from one tangent space to another. Parallel transport is a way of moving vectors from one tangent space to another along a curve in the setting of a general Riemannian manifold. Given a fixed connection, there is a ...

  6. Zariski tangent space - Wikipedia

    en.wikipedia.org/wiki/Zariski_tangent_space

    The tangent space has an interpretation in terms of K[t]/(t 2), the dual numbers for K; in the parlance of schemes, morphisms from Spec K[t]/(t 2) to a scheme X over K correspond to a choice of a rational point x ∈ X(k) and an element of the tangent space at x. [3] Therefore, one also talks about tangent vectors. See also: tangent space to a ...

  7. Connection (vector bundle) - Wikipedia

    en.wikipedia.org/wiki/Connection_(vector_bundle)

    Let M be a differentiable manifold, such as Euclidean space.A vector-valued function can be viewed as a section of the trivial vector bundle. One may consider a section of a general differentiable vector bundle, and it is therefore natural to ask if it is possible to differentiate a section, as a generalization of how one differentiates a function on M.

  8. Pseudo-Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Pseudo-Riemannian_manifold

    Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space. A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike.

  9. Exterior calculus identities - Wikipedia

    en.wikipedia.org/wiki/Exterior_calculus_identities

    denote the tangent bundle and cotangent bundle, respectively, of the smooth manifold . , denote the tangent spaces of , at the points , , respectively. denotes the cotangent space of at the point .