Search results
Results from the WOW.Com Content Network
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
ln(r) is the standard natural logarithm of the real number r. Arg( z ) is the principal value of the arg function; its value is restricted to (− π , π ] . It can be computed using Arg( x + iy ) = atan2 ( y , x ) .
Here we employ a method called "indirect expansion" to expand the given function. This method uses the known Taylor expansion of the exponential function. In order to expand (1 + x)e x as a Taylor series in x, we use the known Taylor series of function e x:
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
Since the right-most expression is defined if n is any real number, this allows defining for every positive real number b and every real number x: = (). In particular, if b is the Euler's number e = exp ( 1 ) , {\displaystyle e=\exp(1),} one has ln e = 1 {\displaystyle \ln e=1} (inverse function) and thus e x = exp ...
For example, ln 7.5 is 2.0149..., because e 2.0149... = 7.5. The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1 ...
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series.Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series.