Search results
Results from the WOW.Com Content Network
The fragmentation function (F.F.) is a probability distribution function. It is used to find the density function of fragmented mesons in hadron -hadron collision. The structure function, like the fragmentation function, is also a probability density function. It is analogous to the structure factor in solid-state physics.
The Stokeslet is the Green's function of the Stokes-Flow-Equations. The conservative term is equal to the dipole gradient field. The formula of vorticity is analogous to the Biot–Savart law in electromagnetism. Alternatively, in a more compact way, one can formulate the velocity field as follows:
Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in quantum mechanics; List of equations in wave theory; List of photonics equations; List of relativistic equations; Relativistic wave equations
Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in gravitation; List of equations in nuclear and particle physics; List of equations in quantum mechanics; List of photonics equations; List of relativistic equations; Table of thermodynamic equations
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane, = = ^ the following general results apply to the particle.
The original Langevin equation [1] [2] describes Brownian motion, the apparently random movement of a particle in a fluid due to collisions with the molecules of the fluid, = + (). Here, v {\displaystyle \mathbf {v} } is the velocity of the particle, λ {\displaystyle \lambda } is its damping coefficient, and m {\displaystyle m} is its mass.
This equation, for various choices of the potential function , can be used to describe the evolution of diverse physical systems, from the motion of interacting molecules to the orbit of the planets. After a transformation to bring the mass to the right side and forgetting the structure of multiple particles, the equation may be simplified to