Search results
Results from the WOW.Com Content Network
Time-resolved simulation of a pulse reflecting from a Bragg mirror. A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers.It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic (such as height) of a dielectric waveguide, resulting in periodic variation in the ...
An infrared dielectric mirror in a mirror mount. A dielectric mirror, also known as a Bragg mirror, is a type of mirror composed of multiple thin layers of dielectric material, typically deposited on a substrate of glass or some other optical material.
As a result, the laser operates on a single spatial and longitudinal mode. The laser emits from the exit facet opposite the DBR end. The DBR is continuously tunable over approximately a 2 nm range by changing current or temperature. The temperature coefficient is approximately 0.07 nm/K, and the current coefficient is approximately 0.003 nm/mA. [2]
A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror .
Acousto-optic modulators are much faster than typical mechanical devices such as tiltable mirrors. The time it takes an AOM to shift the exiting beam in is roughly limited to the transit time of the sound wave across the beam (typically 5 to 100 ns). This is fast enough to create active modelocking in an ultrafast laser.
The interference is constructive when the phase difference between the wave reflected off different atomic planes is a multiple of 2π; this condition (see Bragg condition section below) was first presented by Lawrence Bragg on 11 November 1912 to the Cambridge Philosophical Society. [2] Although simple, Bragg's law confirmed the existence of ...
For the picture shown to the right, corresponds to the band-structure of a 1D distributed Bragg reflector with air-core interleaved with a dielectric material of relative permittivity 12.25, and a lattice period to air-core thickness ratio (d/a) of 0.8, is solved using 101 planewaves over the first irreducible Brillouin zone.
The reflectron with the negative Einzel lens placed near its exit is sometimes referred as the Frey mirror. [8] As earlier as 1985, Frey et al. [9] reported on the gridless reflector that demonstrated mass resolution over 10,000 while mass analyzing the laser-ablated plumes that exhibited 3.3% kinetic energy spread at the exit of the ion source ...