Search results
Results from the WOW.Com Content Network
Memory management (also dynamic memory management, dynamic storage allocation, or dynamic memory allocation) is a form of resource management applied to computer memory.The essential requirement of memory management is to provide ways to dynamically allocate portions of memory to programs at their request, and free it for reuse when no longer needed.
Single allocation is the simplest memory management technique. All the computer's memory, usually with the exception of a small portion reserved for the operating system, is available to a single application. MS-DOS is an example of a system that allocates memory in this way. An embedded system running a single application might also use this ...
Other languages, such as C and C++, were designed for use with manual memory management, but have garbage-collected implementations available. Some languages, like Ada, Modula-3, and C++/CLI, allow both garbage collection and manual memory management to co-exist in the same application by using separate heaps for collected and manually managed ...
In computer science, manual memory management refers to the usage of manual instructions by the programmer to identify and deallocate unused objects, or garbage.Up until the mid-1990s, the majority of programming languages used in industry supported manual memory management, though garbage collection has existed since 1959, when it was introduced with Lisp.
When the allocator is asked to free the object's memory, it just adds the slot to the containing slab's list of free (unused) slots. The next call to create an object of the same type (or allocate memory of the same size) will return that memory slot (or some other free slot) and remove it from the list of free slots.
Once the space has been made available, the OS can read the data for the new page into memory, add an entry to its location in the memory management unit, and indicate that the page is loaded. Thus major faults are more expensive than minor faults and add storage access latency to the interrupted program's execution.
In general, memory access management is a responsibility of the operating system kernel, in combination with hardware mechanisms that provide supporting functionalities, such as a memory management unit (MMU). If a process attempts to access a memory location outside its memory space, the MMU denies the request and signals the kernel to take ...
Though the Linux kernel is not part of the GNU Project, it was developed using GCC and other GNU programming tools and was released as free software under the GNU General Public License. [20] Most compilation of the Linux kernel is still done with GNU toolchains, but it is currently possible to use the Clang compiler and the LLVM toolchain for ...