enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false. [1] Type I error: an innocent person may be convicted. Type II error: a guilty person may be not convicted.

  3. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    The specificity of the test is equal to 1 minus the false positive rate. In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors, but may raise the probability of type II errors (false ...

  4. Null hypothesis - Wikipedia

    en.wikipedia.org/wiki/Null_hypothesis

    If the data do not contradict the null hypothesis, then only a weak conclusion can be made: namely, that the observed data set provides insufficient evidence against the null hypothesis. In this case, because the null hypothesis could be true or false, in some contexts this is interpreted as meaning that the data give insufficient evidence to ...

  5. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Null hypothesis (H 0) Positive data: Data that enable the investigator to reject a null hypothesis. Alternative hypothesis (H 1) Suppose the data can be realized from an N(0,1) distribution. For example, with a chosen significance level α = 0.05, from the Z-table, a one-tailed critical value of approximately 1.645 can be obtained.

  6. Family-wise error rate - Wikipedia

    en.wikipedia.org/wiki/Family-wise_error_rate

    The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.

  7. Testing hypotheses suggested by the data - Wikipedia

    en.wikipedia.org/wiki/Testing_hypotheses...

    In statistics, hypotheses suggested by a given dataset, when tested with the same dataset that suggested them, are likely to be accepted even when they are not true.This is because circular reasoning (double dipping) would be involved: something seems true in the limited data set; therefore we hypothesize that it is true in general; therefore we wrongly test it on the same, limited data set ...

  8. Temporary Error 1 in AOL Mail

    help.aol.com/articles/temporary-error-1-in-aol-mail

    Learn about possible workarounds for Temporary Error 1 in AOL Mail.

  9. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    For example, if one test is performed at the 5% level and the corresponding null hypothesis is true, there is only a 5% risk of incorrectly rejecting the null hypothesis. However, if 100 tests are each conducted at the 5% level and all corresponding null hypotheses are true, the expected number of incorrect rejections (also known as false ...