Search results
Results from the WOW.Com Content Network
[17] [84] The core is relatively small, with a mass of only 0.55 Earth masses and a radius less than 20% of the planet; the mantle comprises its bulk, with around 13.4 Earth masses, and the upper atmosphere is relatively insubstantial, weighing about 0.5 Earth masses and extending for the last 20% of Uranus's radius. [17] [84] Uranus's core ...
There are at least 19 natural satellites in the Solar System that are known to be massive enough to be close to hydrostatic equilibrium: seven of Saturn, five of Uranus, four of Jupiter, and one each of Earth, Neptune, and Pluto. Alan Stern calls these satellite planets, although the term major moon is more common.
The has come to be known as the Schwarzschild radius. The physical significance of these singularities was debated for decades. It was found that the one at r = r s {\displaystyle r=r_{\text{s}}} is a coordinate singularity, meaning that it is an artifact of the particular system of coordinates that was used; while the one at r = 0 ...
Uranus – seventh planet from the Sun. It has the third-largest planetary radius and fourth-largest planetary mass in the Solar System. Uranus is similar in composition to Neptune, and both have different bulk chemical composition from that of the larger gas giants Jupiter and Saturn.
Discovery might also help us explain magnetic fields within our solar system
Uranus is an oblate spheroid, which causes its visible area to become larger when viewed from the poles. This explains in part its brighter appearance at solstices. [16] Uranus is also known to exhibit strong zonal variations in albedo (see above). [10] For instance, the south polar region of Uranus is much brighter than the equatorial bands. [3]
A solar wind event squashed the protective bubble around Uranus just before Voyager 2 flew by the planet in 1986, shifting how astronomers understood the mysterious world.
In astronomy or planetary science, the frost line, also known as the snow line or ice line, is the minimum distance from the central protostar of a solar nebula where the temperature is low enough for volatile compounds such as water, ammonia, methane, carbon dioxide and carbon monoxide to condense into solid grains, which will allow their accretion into planetesimals.