Search results
Results from the WOW.Com Content Network
The distance between two points 1 degree apart on the same circle of latitude, measured along that circle of latitude, is slightly more than the shortest distance between those points (unless on the equator, where these are equal); the difference is less than 0.6 m (2 ft).
The equator is the circle that is equidistant from the North Pole and South Pole. It divides the Earth into the Northern Hemisphere and the Southern Hemisphere. Of the parallels or circles of latitude, it is the longest, and the only 'great circle' (a circle on the surface of the Earth, centered on Earth's center). All the other parallels are ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The longitude λ of a point on Earth's surface is the angle east or west of a reference meridian to another meridian that passes through that point. All meridians are halves of great ellipses (often called great circles), which converge at the North and South Poles.
The Arctic Circle, roughly 67° north of the Equator, defines the boundary of the Arctic waters and lands. The Arctic Circle is one of the two polar circles, and the most northerly of the five major circles of latitude as shown on maps of Earth at about 66° 34' N. [1] Its southern equivalent is the Antarctic Circle.
At an arbitrary point P consider the line PN which is normal to the reference ellipsoid. The geodetic coordinates P(ΙΈ,λ,h) are the latitude and longitude of the point N on the ellipsoid and the distance PN. This height differs from the height above the geoid or a reference height such as that above mean sea level at a specified location.
To find the way-points, that is the positions of selected points on the great circle between P 1 and P 2, we first extrapolate the great circle back to its node A, the point at which the great circle crosses the equator in the northward direction: let the longitude of this point be λ 0 — see Fig 1.
where a is the radius of the circle, (,) are the polar coordinates of a generic point on the circle, and (,) are the polar coordinates of the centre of the circle (i.e., r 0 is the distance from the origin to the centre of the circle, and φ is the anticlockwise angle from the positive x axis to the line connecting the origin to the centre of ...