enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. G/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/G/1_queue

    The system is described in Kendall's notation where the G denotes a general distribution for both interarrival times and service times and the 1 that the model has a single server. [ 3 ] [ 4 ] Different interarrival and service times are considered to be independent, and sometimes the model is denoted GI/GI/1 to emphasise this.

  3. Kendall's notation - Wikipedia

    en.wikipedia.org/wiki/Kendall's_notation

    Exponential service time with a random variable Y for the size of the batch of entities serviced at one time. M X /M Y /1 queue: D: Degenerate distribution: A deterministic or fixed service time. M/D/1 queue: E k: Erlang distribution: An Erlang distribution with k as the shape parameter (i.e., sum of k i.i.d. exponential random variables). G ...

  4. M/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/M/1_queue

    The stationary distribution is the limiting distribution for large values of t. Various performance measures can be computed explicitly for the M/M/1 queue. We write ρ = λ/μ for the utilization of the buffer and require ρ < 1 for the queue to be stable. ρ represents the average proportion of time which the server is occupied.

  5. Queueing theory - Wikipedia

    en.wikipedia.org/wiki/Queueing_theory

    [6] [7] For an example of the notation, the M/M/1 queue is a simple model where a single server serves jobs that arrive according to a Poisson process (where inter-arrival durations are exponentially distributed) and have exponentially distributed service times (the M denotes a Markov process).

  6. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]

  7. M/G/1 queue - Wikipedia

    en.wikipedia.org/wiki/M/G/1_queue

    where as above is the Laplace–Stieltjes transform of the service time distribution function. This relationship can only be solved exactly in special cases (such as the M/M/1 queue ), but for any s {\textstyle s} the value of ϕ ( s ) {\textstyle \phi (s)} can be calculated and by iteration with upper and lower bounds the distribution function ...

  8. G/M/1 queue - Wikipedia

    en.wikipedia.org/wiki/G/M/1_queue

    The response time is the amount of time a job spends in the system from the instant of arrival to the time they leave the system. A consistent and asymptotically normal estimator for the mean response time, can be computed as the fixed point of an empirical Laplace transform.

  9. Renewal theory - Wikipedia

    en.wikipedia.org/wiki/Renewal_theory

    A vivid example is the bus waiting time paradox: For a given random distribution of bus arrivals, the average rider at a bus stop observes more delays than the average operator of the buses. The resolution of the paradox is that our sampled distribution at time t is size-biased (see sampling bias ), in that the likelihood an interval is chosen ...