Search results
Results from the WOW.Com Content Network
It was prominently criticized in economics by Robert LaLonde (1986), [7] who compared estimates of treatment effects from an experiment to comparable estimates produced with matching methods and showed that matching methods are biased. Rajeev Dehejia and Sadek Wahba (1999) reevaluated LaLonde's critique and showed that matching is a good ...
Repeated measures analysis of variance (rANOVA) is a commonly used statistical approach to repeated measure designs. [3] With such designs, the repeated-measure factor (the qualitative independent variable) is the within-subjects factor, while the dependent quantitative variable on which each participant is measured is the dependent variable.
Cross-validation includes resampling and sample splitting methods that use different portions of the data to test and train a model on different iterations. It is often used in settings where the goal is prediction, and one wants to estimate how accurately a predictive model will perform in practice.
Radius matching: all matches within a particular radius are used -- and reused between treatment units. Kernel matching: same as radius matching, except control observations are weighted as a function of the distance between the treatment observation's propensity score and control match propensity score. One example is the Epanechnikov kernel.
In statistics, the jackknife (jackknife cross-validation) is a cross-validation technique and, therefore, a form of resampling. It is especially useful for bias and variance estimation. The jackknife pre-dates other common resampling methods such as the bootstrap.
This is a list of statistical procedures which can be used for the analysis of categorical data, also known as data on the nominal scale and as categorical variables. General tests [ edit ]
In statistics and econometrics, cross-sectional data is a type of data collected by observing many subjects (such as individuals, firms, countries, or regions) at a single point or period of time. Analysis of cross-sectional data usually consists of comparing the differences among selected subjects, typically with no regard to differences in time.
Multiple comparisons arise when a statistical analysis involves multiple simultaneous statistical tests, each of which has a potential to produce a "discovery". A stated confidence level generally applies only to each test considered individually, but often it is desirable to have a confidence level for the whole family of simultaneous tests. [4]