Search results
Results from the WOW.Com Content Network
A process during which the entropy remains constant is called an isentropic process, written = or =. [12] Some examples of theoretically isentropic thermodynamic devices are pumps, gas compressors, turbines, nozzles, and diffusers.
And 2 to 3s is the isentropic process from rotor inlet at 2 to rotor outlet at 3. The velocity triangle [2] (Figure 2.) for the flow process within the stage represents the change in fluid velocity as it flows first in the stator or the fixed blades and then through the rotor or the moving blades. Due to the change in velocities there is a ...
In an ideal Rankine cycle the pump and turbine would be isentropic: i.e., the pump and turbine would generate no entropy and would hence maximize the net work output. Processes 1–2 and 3–4 would be represented by vertical lines on the T–s diagram and more closely resemble that of the Carnot cycle .
Isentropic is the combination of the Greek word "iso" (which means - same) and entropy. When the change in flow variables is small and gradual, isentropic flows occur. The generation of sound waves is an isentropic process. A supersonic flow that is turned while there is an increase in flow area is also isentropic.
isentropic process – the heated, pressurized air then gives up its energy, expanding through a turbine (or series of turbines). Some of the work extracted by the turbine is used to drive the compressor. isobaric process – heat rejection (in the atmosphere). Actual Brayton cycle: adiabatic process – compression; isobaric process – heat ...
Point 3 labels the transition from isentropic to Fanno flow. Points 4 and 5 give the pre- and post-shock wave conditions, and point E is the exit from the duct. Figure 4 The H-S diagram is depicted for the conditions of Figure 3. Entropy is constant for isentropic flow, so the conditions at point 1 move down vertically to point 3.
The losses occur in an actual turbine due to disc and bearing friction. Figure shows the energy flow diagram for the impulse stage of an axial turbine. Numbers in brackets indicate the order of energy or loss corresponding to 100 units of isentropic work (h 01 – h 03ss). Energy flow diagram for the impulse stage of an axial turbine
An ideal steam turbine is considered to be an isentropic process, or constant entropy process, in which the entropy of the steam entering the turbine is equal to the entropy of the steam leaving the turbine. No steam turbine is truly isentropic, however, with typical isentropic efficiencies ranging from 20 to 90% based on the application of the ...