enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Divergence (computer science) - Wikipedia

    en.wikipedia.org/wiki/Divergence_(computer_science)

    In computer science, a computation is said to diverge if it does not terminate or terminates in an exceptional state. [1]: 377 Otherwise it is said to converge.In domains where computations are expected to be infinite, such as process calculi, a computation is said to diverge if it fails to be productive (i.e. to continue producing an action within a finite amount of time).

  3. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  4. Fixed-point iteration - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_iteration

    The fixed point iteration x n+1 = cos x n with initial value x 1 = −1.. An attracting fixed point of a function f is a fixed point x fix of f with a neighborhood U of "close enough" points around x fix such that for any value of x in U, the fixed-point iteration sequence , (), (()), ((())), … is contained in U and converges to x fix.

  5. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    The false position method can be faster than the bisection method and will never diverge like the secant method. However, it may fail to converge in some naive implementations due to roundoff errors that may lead to a wrong sign for f(c). Typically, this may occur if the derivative of f is large in the neighborhood of the root.

  7. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.

  8. Convergence of measures - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_measures

    For (,) a measurable space, a sequence μ n is said to converge setwise to a limit μ if = ()for every set .. Typical arrow notations are and .. For example, as a consequence of the Riemann–Lebesgue lemma, the sequence μ n of measures on the interval [−1, 1] given by μ n (dx) = (1 + sin(nx))dx converges setwise to Lebesgue measure, but it does not converge in total variation.

  9. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded. For sums of non-negative increasing sequences 0 ≤ a i , 1 ≤ a i , 2 ≤ ⋯ {\displaystyle 0\leq a_{i,1}\leq a_{i,2}\leq \cdots } , it says that taking the sum and the supremum can be interchanged.