Search results
Results from the WOW.Com Content Network
In special relativity, a four-vector (or 4-vector, sometimes Lorentz vector) [1] is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group ...
Spacetime mathematically viewed as R 4 endowed with this bilinear form is known as Minkowski space M. The Lorentz transformation is thus an element of the group O(1, 3), the Lorentz group or, for those that prefer the other metric signature, O(3, 1) (also called the Lorentz group). [nb 3] One has:
The concept of the Lorentz group has a natural generalization to spacetime of any number of dimensions. Mathematically, the Lorentz group of ( n + 1)-dimensional Minkowski space is the indefinite orthogonal group O( n , 1) of linear transformations of R n +1 that preserves the quadratic form
However, a line integral involves the application of the vector dot product, and when this is extended to 4-dimensional spacetime, a change of sign is introduced to either the spatial co-ordinates or the time co-ordinate depending on the convention used. This is due to the non-Euclidean nature of spacetime.
Hermann Minkowski (1864–1909) found that the theory of special relativity could be best understood as a four-dimensional space, since known as the Minkowski spacetime. In physics, Minkowski space (or Minkowski spacetime) (/ m ɪ ŋ ˈ k ɔː f s k i,-ˈ k ɒ f-/ [1]) is the main mathematical description of spacetime in the absence of gravitation.
In Einstein's theory of relativity, the path of an object moving relative to a particular frame of reference is defined by four coordinate functions x μ (τ), where μ is a spacetime index which takes the value 0 for the timelike component, and 1, 2, 3 for the spacelike coordinates.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These ...
The Christoffel symbols find frequent use in Einstein's theory of general relativity, where spacetime is represented by a curved 4-dimensional Lorentz manifold with a Levi-Civita connection. The Einstein field equations – which determine the geometry of spacetime in the presence of matter – contain the Ricci tensor. Since the Ricci tensor ...