Search results
Results from the WOW.Com Content Network
Converting cubic tons (i.e., volumes) to measures of weight presents difficulties because organic materials such as timber vary in density. Approximate volume conversions, based on a timber cubic ton of 40 cubic feet: 1 ton (40 cubic feet) = 1.133 cubic metres; 1 cubic metre = 0.883 cubic tons (35.32 cubic feet)
Mass fraction can also be expressed, with a denominator of 100, as percentage by mass (in commercial contexts often called percentage by weight, abbreviated wt.% or % w/w; see mass versus weight). It is one way of expressing the composition of a mixture in a dimensionless size ; mole fraction (percentage by moles , mol%) and volume fraction ...
Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely, multiply by 0.001. Specific volume is inversely proportional to density.
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
It is the same concept as volume percent (vol%) except that the latter is expressed with a denominator of 100, e.g., 18%. The volume fraction coincides with the volume concentration in ideal solutions where the volumes of the constituents are additive (the volume of the solution is equal to the sum of the volumes of its ingredients).
The weight of the displaced fluid can be found mathematically. The mass of the displaced fluid can be expressed in terms of the density and its volume, m = ρV. The fluid displaced has a weight W = mg, where g is acceleration due to gravity. Therefore, the weight of the displaced fluid can be expressed as W = ρVg.
V, the ship's total volume in cubic metres (m 3), and; K, a multiplier based on the ship volume. The value of the multiplier K increases logarithmically with the ship's total volume (in cubic metres) and is applied as an amplification factor in determining the gross tonnage value. K is calculated with a formula which uses the common or base-10 ...
To calculate the weight of the displaced water, it is necessary to know its density. Seawater (1,025 kg/m 3 ) is more dense than fresh water (1,000 kg/m 3 ); [ 5 ] so a ship will ride higher in salt water than in fresh.