Search results
Results from the WOW.Com Content Network
If the heuristic function used by A* is admissible, then A* is admissible. An intuitive "proof" of this is as follows: When A* terminates its search, it has found a path from start to goal whose actual cost is lower than the estimated cost of any path from start to goal through any open node (the node's value). When the heuristic is ...
Love calculator: The input is two names, and there is a button to work out the compatibility, as a percentage, of two people with these names. Formula weight calculator: The input is a chemical molecular formula, using the periodic-table symbols and notation, and there is a button to work out the percentages of its constituents. Astronomical ...
It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the remaining cost to get to the goal from the A* search algorithm. Since it is a depth-first search algorithm, its memory usage is lower than in A*, but unlike ordinary iterative deepening search, it ...
In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]
Figure 1. Finding the shortest path in a graph using optimal substructure; a straight line indicates a single edge; a wavy line indicates a shortest path between the two vertices it connects (among other paths, not shown, sharing the same two vertices); the bold line is the overall shortest path from start to goal.
The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of steepest descent. Conversely, stepping in the direction of the gradient will lead to a trajectory that maximizes that function; the procedure is then known as gradient ascent .
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
The lower the estimated cost, the better the algorithm, as a lower estimated cost is more likely to be lower than the best cost of solution found so far. On the other hand, this estimated cost cannot be lower than the effective cost that can be obtained by extending the solution, as otherwise the algorithm could backtrack while a solution ...