enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  3. Klein–Gordon equation - Wikipedia

    en.wikipedia.org/wiki/Klein–Gordon_equation

    The equation was named after the physicists Oskar Klein [9] and Walter Gordon, [10] who in 1926 proposed that it describes relativistic electrons. Vladimir Fock also discovered the equation independently in 1926 slightly after Klein's work, [ 11 ] in that Klein's paper was received on 28 April 1926, Fock's paper was received on 30 July 1926 and ...

  4. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  5. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:

  6. Relativistic particle - Wikipedia

    en.wikipedia.org/wiki/Relativistic_particle

    In other words, a massive particle is relativistic when its total mass-energy is at least twice its rest mass. This condition implies that the speed of the particle is close to the speed of light. According to the Lorentz factor formula, this requires the particle to move at roughly 85% of the speed of light.

  7. Relativistic mechanics - Wikipedia

    en.wikipedia.org/wiki/Relativistic_mechanics

    The relativistic energy–momentum equation holds for all particles, even for massless particles for which m 0 = 0. In this case: = When substituted into Ev = c 2 p, this gives v = c: massless particles (such as photons) always travel at the speed of light.

  8. Tests of relativistic energy and momentum - Wikipedia

    en.wikipedia.org/wiki/Tests_of_relativistic...

    So relativistic energy and momentum significantly increase with speed, thus the speed of light cannot be reached by massive particles. In some relativity textbooks, the so-called "relativistic mass" = is used as well. However, this concept is considered disadvantageous by many authors, instead the expressions of relativistic energy and momentum ...

  9. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    Thus, when reactions (whether chemical or nuclear) release energy in the form of heat and light, if the heat and light is not allowed to escape (the system is closed and isolated), the energy will continue to contribute to the system rest mass, and the system mass will not change. Only if the energy is released to the environment will the mass ...

  1. Related searches relativistic energy equation meaning in science class 3 mcq class 10 chemical reactions

    list of relativistic equationsrelativistic equation formula
    special relativity equationslist of relativity formulas