Search results
Results from the WOW.Com Content Network
Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in ...
However, approximately 412 muons per hour arrived in Cambridge, resulting in a time dilation factor of 8.8 ± 0.8. Frisch and Smith showed that this is in agreement with the predictions of special relativity: The time dilation factor for muons on Mount Washington traveling at 0.995 c to 0.9954 c is approximately 10.2.
Time dilation by the Lorentz factor was predicted by several authors at the turn of the 20th century. [3] [4] Joseph Larmor (1897) wrote that, at least for those orbiting a nucleus, individual electrons describe corresponding parts of their orbits in times shorter for the [rest] system in the ratio: . [5]
In Minkowski's 1908 paper there were three diagrams, first to illustrate the Lorentz transformation, then the partition of the plane by the light-cone, and finally illustration of worldlines. [8] The first diagram used a branch of the unit hyperbola t 2 − x 2 = 1 {\displaystyle t^{2}-x^{2}=1} to show the locus of a unit of proper time ...
The following notations are used very often in special relativity: Lorentz factor = where = and v is the relative velocity between two inertial frames.. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames.
The quantity on the left is called the spacetime interval between events a 1 = (t 1, x 1, y 1, z 1) and a 2 = (t 2, x 2, y 2, z 2). The interval between any two events, not necessarily separated by light signals, is in fact invariant, i.e., independent of the state of relative motion of observers in different inertial frames, as is shown using ...
Given two inertial or rotated frames of reference, a four-vector is defined as a quantity which transforms according to the Lorentz transformation matrix Λ: ′ =. In index notation, the contravariant and covariant components transform according to, respectively: ′ =, ′ = in which the matrix Λ has components Λ μ ν in row μ and column ν, and the matrix (Λ −1) T has components Λ ...
In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.