Search results
Results from the WOW.Com Content Network
For example, the lunar tidal acceleration at the Earth's surface along the Moon–Earth axis is about 1.1 × 10 −7 g, while the solar tidal acceleration at the Earth's surface along the Sun–Earth axis is about 0.52 × 10 −7 g, where g is the gravitational acceleration at the Earth's surface.
The surface gravity, g, of an astronomical object is the gravitational acceleration experienced at its surface at the equator, including the effects of rotation. The surface gravity may be thought of as the acceleration due to gravity experienced by a hypothetical test particle which is very close to the object's surface and which, in order not to disturb the system, has negligible mass.
Global dimming is a decline in the amount of sunlight reaching the Earth's surface. [2] [3] It is caused by atmospheric particulate matter, predominantly sulfate aerosols, which are components of air pollution. [4]
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.
A contour plot of the effective gravitational potential of a two-body system, here, the Sun and Earth, indicating the five Lagrange points. [ clarification needed ] [ citation needed ] One simple view of the extent of the Solar System is that it is bounded by the Hill sphere of the Sun (engendered by the Sun's interaction with the galactic ...
The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ(r) = ρ 0 − (ρ 0 − ρ 1) r / R, and the ...
The Sun is gradually becoming hotter in its core, hotter at the surface, larger in radius, and more luminous during its time on the main sequence: since the beginning of its main sequence life, it has expanded in radius by 15% and the surface has increased in temperature from 5,620 K (9,660 °F) to 5,772 K (9,930 °F), resulting in a 48% ...
For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s /r is roughly 4 parts in a