Search results
Results from the WOW.Com Content Network
The two rightmost columns indicate which irreducible representations describe the symmetry transformations of the three Cartesian coordinates (x, y and z), rotations about those three coordinates (R x, R y and R z), and functions of the quadratic terms of the coordinates(x 2, y 2, z 2, xy, xz, and yz).
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
A skew reflection is a generalization of an ordinary reflection across a line , where all point-image pairs are on a line perpendicular to . Because a skew reflection leaves the hyperbola fixed, the pair of asymptotes is fixed, too.
For example, for n ≥ 2, the graph consisting of n+1 vertices in a circle is obtained from A n in this way, and the corresponding Coxeter group is the affine Weyl group of A n (the affine symmetric group). For n = 2, this can be pictured as a subgroup of the symmetry group of the standard tiling of the plane by equilateral triangles.
As an example, consider the dihedral group G = D 3 = Sym(X), where X is an equilateral triangle. We may decorate this with an arrow on one edge, obtaining an asymmetric figure X #. Letting τ ∈ G be the reflection of the arrowed edge, the composite figure X + = X # ∪ τX # has a bidirectional arrow on that edge, and its symmetry group is H ...
A reflection through an axis. In mathematics, a reflection (also spelled reflexion) [1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection.
Isometries which leave the function unchanged are translations x + a with a such that f(x + a) = f(x) and reflections a − x with a such that f(a − x) = f(x). The reflections can be represented by the affine Coxeter group [∞], or Coxeter-Dynkin diagram representing two reflections, and the translational symmetry as [∞] + , or Coxeter ...
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry