Search results
Results from the WOW.Com Content Network
In a new bottle of soda, the concentration of carbon dioxide in the liquid phase has a particular value. If half of the liquid is poured out and the bottle is sealed, carbon dioxide will leave the liquid phase at an ever-decreasing rate, and the partial pressure of carbon dioxide in the gas phase will increase until equilibrium is reached.
D'Alembert's principle generalizes the principle of virtual work from static to dynamical systems by introducing forces of inertia which, when added to the applied forces in a system, result in dynamic equilibrium. [1] [2] D'Alembert's principle can be applied in cases of kinematic constraints that depend on velocities.
The equilibrium constant of carbon dioxide would be completely independent of the nitrogen and oxygen pumped into the system, which would slow down the diffusion of gas, and yet not have an impact on the thermodynamics of the entire system. The temperature within a system in thermodynamic equilibrium is uniform in space as well as in time.
Thus, the space model of a ternary phase diagram is a right-triangular prism. The prism sides represent corresponding binary systems A-B, B-C, A-C. However, the most common methods to present phase equilibria in a ternary system are the following: 1) projections on the concentration triangle ABC of the liquidus, solidus, solvus surfaces; 2 ...
If a system is not in static equilibrium, D'Alembert showed that by introducing the acceleration terms of Newton's laws as inertia forces, this approach is generalized to define dynamic equilibrium. The result is D'Alembert's form of the principle of virtual work, which is used to derive the equations of motion for a mechanical system of rigid ...
In 1884, Jacobus van 't Hoff proposed the Van 't Hoff equation describing the temperature dependence of the equilibrium constant for a reversible reaction: = where ΔU is the change in internal energy, K is the equilibrium constant of the reaction, R is the universal gas constant, and T is thermodynamic temperature.
John Tilton Hack (1913–1991) was an American geologist and geomorphologist known for his contributions to establish the dynamic equilibrium concept in landscapes. Hack's law, concerning the empirical relationship between the length of streams and the area of their basins, is named after him.
In the thermodynamics of equilibrium, a state function, function of state, or point function for a thermodynamic system is a mathematical function relating several state variables or state quantities (that describe equilibrium states of a system) that depend only on the current equilibrium thermodynamic state of the system [1] (e.g. gas, liquid, solid, crystal, or emulsion), not the path which ...