Search results
Results from the WOW.Com Content Network
ROCm [3] is an Advanced Micro Devices (AMD) software stack for graphics processing unit (GPU) programming. ROCm spans several domains: general-purpose computing on graphics processing units (GPGPU), high performance computing (HPC), heterogeneous computing .
Nvidia launched CUDA in 2006, a software development kit (SDK) and application programming interface (API) that allows using the programming language C to code algorithms for execution on GeForce 8 series and later GPUs. ROCm, launched in 2016, is AMD's open-source response to CUDA. It is, as of 2022, on par with CUDA with regards to features ...
ROCm (Radeon Open Compute platform) is AMD's compute stack for machine learning and high-performance computing, based on the LLVM compiler technologies. Under the ROCm project, AMDgpu is AMD's open-source device driver supporting the GCN and following architectures, available for Linux. This latter driver component is used both by the graphics ...
ROCm support [1] Automatic differentiation [2] Has pretrained models Recurrent nets Convolutional nets RBM/DBNs Parallel execution (multi node) Actively developed BigDL: Jason Dai (Intel) 2016 Apache 2.0: Yes Apache Spark Scala Scala, Python No No Yes Yes Yes Yes Caffe: Berkeley Vision and Learning Center 2013 BSD: Yes Linux, macOS, Windows [3] C++
OpenCL (Open Computing Language) is a framework for writing programs that execute across heterogeneous platforms consisting of central processing units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs), field-programmable gate arrays (FPGAs) and other processors or hardware accelerators.
The MI300X is designed to accelerate generative AI applications, such as natural language processing, computer vision, and deep learning. The MI300X has a peak performance of 653.7 TFLOPS of TP32 (1307.4 TFLOPS with sparsity) and 1307.4 TFLOPS of FP16 (2614.9 TFLOPS with sparsity), as well as 5.3 TB/s of memory bandwidth.
In computing, CUDA is a proprietary [1] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.
SYCL was introduced at GDC in March 2014 with provisional version 1.2, [4] then the SYCL 1.2 final version was introduced at IWOCL 2015 in May 2015. [5]The latest version for the previous SYCL 1.2.1 series is SYCL 1.2.1 revision 7 which was published on April 27, 2020 (the first version was published on December 6, 2017 [6]).