Search results
Results from the WOW.Com Content Network
We can convert a mass expressed in kilograms to the equivalent mass expressed in metres by multiplying by the conversion factor G/c 2. For example, the Sun's mass of 2.0 × 10 30 kg in SI units is equivalent to 1.5 km. This is half the Schwarzschild radius of a one solar mass black hole. All other conversion factors can be worked out by ...
The mass of 1 litre of water is about 1 kg (kilogram). [12] The mass of the Earth is about 6 Rg ... There exist a number of definitions for the non-SI unit, ...
SI units Dimension Mechanical work due to a Resultant Force W = J = N m = kg m 2 s −2: M L 2 T −2: Work done ON mechanical system, Work done BY W ON, W BY = J = N m = kg m 2 s −2: M L 2 T −2: Potential energy
The SI unit for specific heat capacity is joule per kelvin per kilogram J / kg⋅K , J⋅K −1 ⋅kg −1. Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same as joule per degree Celsius per kilogram: J/(kg⋅°C).
One of the functions of many types of multimeters is the measurement of resistance in ohms.. The ohm is defined as an electrical resistance between two points of a conductor when a constant potential difference of one volt (V), applied to these points, produces in the conductor a current of one ampere (A), the conductor not being the seat of any electromotive force.
For electrons or electron holes in a solid, the effective mass is usually stated as a factor multiplying the rest mass of an electron, m e (9.11 × 10 −31 kg). This factor is usually in the range 0.01 to 10, but can be lower or higher—for example, reaching 1,000 in exotic heavy fermion materials , or anywhere from zero to infinity ...
The International System of Units (SI), ... on the basis that it is easier to remember an integer number of inches plus a ... 1 slug = 1 lbf⋅s 2 /ft ≈ 14.59390 kg;
The SI unit of volumetric heat capacity is joule per kelvin per cubic meter, J⋅K −1 ⋅m −3. The volumetric heat capacity can also be expressed as the specific heat capacity (heat capacity per unit of mass, in J⋅K −1 ⋅ kg −1 ) times the density of the substance (in kg/ L , or g / mL ). [ 1 ]