Search results
Results from the WOW.Com Content Network
The red curve shows the global mean temperature, according HadCRUT4 data from 1850 onwards. In blue is the original hockey stick of Mann, Bradley and Hughes (1999 ) with its uncertainty range (light blue). Graph by Klaus Bitterman.
In the height region between about 85 and 200 km altitude on Earth, the ionospheric plasma is electrically conducting. Atmospheric tidal winds due to differential solar heating or due to gravitational lunar forcing move the ionospheric plasma against the geomagnetic field lines thus generating electric fields and currents just like a dynamo coil moving against magnetic field lines.
Computer generated Lifted Index field from April 6th, 2009, at 1 pm EDT. Unstable areas are in yellow (slightly) and red (highly) while the stable zone is in blue. The lifted index ( LI ) is the temperature difference between the environment Te(p) and an air parcel lifted adiabatically Tp(p) at a given pressure height in the troposphere (lowest ...
A transport equation, usually of heat (sometimes of light element concentration): = + where T is temperature, = / is the thermal diffusivity with k thermal conductivity, heat capacity, and density, and is an optional heat source. Often the pressure is the dynamic pressure, with the hydrostatic pressure and centripetal potential removed.
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.
This occurs in the limit of large magnetic Reynolds numbers during which magnetic induction dominates over magnetic diffusion at the velocity and length scales under consideration. [5] Consequently, processes in ideal MHD that convert magnetic energy into kinetic energy, referred to as ideal processes, cannot generate heat and raise entropy. [7]: 6
Plot showing field lines (which, in three dimensions would describe "shells") for L-values 1.5, 2, 3, 4 and 5 using a dipole model of the Earth's magnetic field. The L-shell, L-value, or McIlwain L-parameter (after Carl E. McIlwain) is a parameter describing a particular set of planetary magnetic field lines.
[1]: 117 The formula above is known as the Langevin paramagnetic equation. Pierre Curie found an approximation to this law that applies to the relatively high temperatures and low magnetic fields used in his experiments. As temperature increases and magnetic field decreases, the argument of the hyperbolic tangent decreases.